22 research outputs found

    Kodierung von Gaußmaßen

    Get PDF
    Es sei gammagamma ein Gaußmaß auf der Borelschen sigmasigma-Algebra mathcalBmathcal B des separablen Banachraums BB. Für X:OmegaoBX:Omega o B gelte PX=gammaP_X=gamma. Wir untersuchen den mittleren Fehler, der bei Kodierung von gammagamma respektive XX mit NinmathbbNNinmathbb N Punkten entsteht, und bestimmen untere und obere Abschätzungen für die Asymptotik (NoinftyN oinfty) dieses Fehlers. Hierbei betrachten wir zu r>0r>0 Gütekriterien wie folgt: Deterministische Kodierung delta2(N,r):=infy1,ldots,yNinBEmink=1,ldots,NXykr.delta_2(N,r) := inf_{y_1,ldots,y_Nin B}Emin_{k=1,ldots,N}X-y_k^r. Zufällige Kodierung delta3(N,r):=infuEmink=1,ldots,NXYkr.delta_3(N,r) := inf_ u Emin_{k=1,ldots,N}X-Y_k^r. Die (Yk)(Y_k) seien hierbei i.i.d., unabhängig von XX, und nach u u verteilt. Das Infimum wird über alle Wahrscheinlichkeitsmaße u u gebildet. Für das Gütekriterium delta4(cdot,r)delta_4(cdot,r) wird ausgehend von der Definition von delta3(cdot,r)delta_3(cdot,r) u u nicht optimal, sondern u=gamma u=gamma gewählt. Das Gütekriterium delta1(cdot,r)delta_1(cdot,r) ergibt sich aus der Quellkodierungstheorie nach Shannon. Es gilt delta1(cdot,r)ledelta2(cdot,r)ledelta3(cdot,r)ledelta4(cdot,r).delta_1(cdot,r) le delta_2(cdot,r) le delta_3(cdot,r) le delta_4(cdot,r). Wir stellen folgenden Zusammenhang zwischen der Asymptotik von delta4(cdot,r)delta_4(cdot,r) und den logarithmischen kleinen Abweichungen von gammagamma her: Es gebe kappa,a>0kappa,a>0 und binRbinR mit psi(varepsilon) := -log P{X1.Let gammagamma be a Gaussian measure on the Borel sigmasigma-algebra mathcalBmathcal B of the separable Banach space BB. Let X:OmegaoBX:Omega o B with PX=gammaP_X=gamma. We investigate the average error in coding gammagamma resp. XX with NinmathbbNNinmathbb N points and obtain lower and upper bounds for the error asymptotics (NoinftyN oinfty). We consider, given r>0r>0, fidelity criterions as follows: Deterministic Coding delta2(N,r):=infy1,ldots,yNinBEmink=1,ldots,NXykr.delta_2(N,r) := inf_{y_1,ldots,y_Nin B}Emin_{k=1,ldots,N}X-y_k^r. Random Coding delta3(N,r):=infuEmink=1,ldots,NXYkr.delta_3(N,r) := inf_ u Emin_{k=1,ldots,N}X-Y_k^r. The (Yk)(Y_k) above are i.i.d., independent of XX, and distributed according to u u. The infimum is taken with respect to all probability measures u u. For the fidelity criterion delta4(cdot,r)delta_4(cdot,r), starting from the definition of delta3(cdot,r)delta_3(cdot,r), u u is not chosen optimal, but as u=gamma u=gamma. The fidelity criterion delta1(cdot,r)delta_1(cdot,r) is given according to the source coding theory of Shannon. The fidelity criterions are connected through delta1(cdot,r)ledelta2(cdot,r)ledelta3(cdot,r)ledelta4(cdot,r).delta_1(cdot,r) le delta_2(cdot,r) le delta_3(cdot,r) le delta_4(cdot,r). We obtain the following connection between the asymptotics of delta4(cdot,r)delta_4(cdot,r) and the den logarithmic small deviations of gammagamma: Let kappa,a>0kappa,a>0 and binRbinR with psi(varepsilon) := -log P{X1

    Statistical iterative reconstruction algorithm for X-ray phase-contrast CT.

    No full text
    Grating-based phase-contrast computed tomography (PCCT) is a promising imaging tool on the horizon for pre-clinical and clinical applications. Until now PCCT has been plagued by strong artifacts when dense materials like bones are present. In this paper, we present a new statistical iterative reconstruction algorithm which overcomes this limitation. It makes use of the fact that an X-ray interferometer provides a conventional absorption as well as a dark-field signal in addition to the phase-contrast signal. The method is based on a statistical iterative reconstruction algorithm utilizing maximum-a-posteriori principles and integrating the statistical properties of the raw data as well as information of dense objects gained from the absorption signal. Reconstruction of a pre-clinical mouse scan illustrates that artifacts caused by bones are significantly reduced and image quality is improved when employing our approach. Especially small structures, which are usually lost because of streaks, are recovered in our results. In comparison with the current state-of-the-art algorithms our approach provides significantly improved image quality with respect to quantitative and qualitative results. In summary, we expect that our new statistical iterative reconstruction method to increase the general usability of PCCT imaging for medical diagnosis apart from applications focused solely on soft tissue visualization

    X-ray nanotomography using near-field ptychography

    No full text
    International audiencePropagation-based imaging or inline holography in combination with computed tomography (holotomography) is a versatile tool to access a sample's three-dimensional (3D) micro or nano structure. However, the phase retrieval step needed prior to tomographic reconstruction can be challenging especially for strongly absorbing and refracting samples. Near-field ptychography is a recently developed phase imaging method that has been proven to overcome this hurdle in projection data. In this work we extend near-field ptychography to three dimensions and we show that, in combination with tomography, it can access the nano structure of a solid oxide fuel cell (SOFC). The quality of the resulting tomographic data and the structural properties of the anode extracted from this volume were compared to previous results obtained with holotomography. This work highlights the potential of 3D near-field ptychography for reliable and detailed investigations of samples at the nanometer scale, with important applications in materials and life sciences among others. (C) 2015 Optical Society of Americ
    corecore